Language:
English
繁體中文
Help
回圖書館
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Lectures on Kahler Geometry.
~
Moroianu, Andrei.
Lectures on Kahler Geometry.
Record Type:
Electronic resources : Monograph/item
Title/Author:
Lectures on Kahler Geometry./
Author:
Moroianu, Andrei.
Published:
Leiden :Cambridge University Press, : 2007.,
Description:
183 p.
Series:
London Mathematical Society Student Texts
Online resource:
Click here to view book
ISBN:
9780511618666# (electronic bk.)
Lectures on Kahler Geometry.
Moroianu, Andrei.
Lectures on Kahler Geometry.
[electronic resource]. - Leiden :Cambridge University Press,2007. - 183 p. - London Mathematical Society Student Texts.
Contents; Introduction; CHAPTER 1 Smooth manifolds; CHAPTER 2 Tensor fields on smooth manifolds; CHAPTER 3 The exterior derivative; CHAPTER 4 Principal and vector bundles; CHAPTER 5 Connections; CHAPTER 6 Riemannian manifolds; CHAPTER 7 Complex structures and holomorphic maps; CHAPTER 8 Holomorphic forms and vector fields; CHAPTER 9 Complex and holomorphic vector bundles; CHAPTER 10 Hermitian bundles; CHAPTER 11 Hermitian and Kahler metrics; CHAPTER 12 The curvature tensor of Kahler manifolds; CHAPTER 13 Examples of Kahler metrics
Graduate text providing a concise and self-contained introduction to Kahler geometry.
Electronic reproduction.
Available via World Wide Web.
Mode of access: World Wide Web.
ISBN: 9780511618666# (electronic bk.)Index Terms--Genre/Form:
96803
Electronic books.
LC Class. No.: QA649 . / M77 2007
Dewey Class. No.: 516.36
Lectures on Kahler Geometry.
LDR
:02039nmm a22003013u 4500
001
149123
003
AU-PeEL
005
20090601202843.0
006
m d
007
cr mn---------
008
160127t2007 ||| s |||||||eng|d
020
$a
9780511618666# (electronic bk.)
020
$a
9780521868914 (print)
035
$a
EBL288638
035
$a
EBL288638
040
$a
AU-PeEL
$c
AU-PeEL
$d
AU-PeEL
050
0 0
$a
QA649 .
$b
M77 2007
082
0 0
$a
516.36
100
1
$a
Moroianu, Andrei.
$3
278103
245
1 0
$a
Lectures on Kahler Geometry.
$h
[electronic resource].
260
$a
Leiden :
$c
2007.
$b
Cambridge University Press,
300
$a
183 p.
440
0
$a
London Mathematical Society Student Texts
505
0
$a
Contents; Introduction; CHAPTER 1 Smooth manifolds; CHAPTER 2 Tensor fields on smooth manifolds; CHAPTER 3 The exterior derivative; CHAPTER 4 Principal and vector bundles; CHAPTER 5 Connections; CHAPTER 6 Riemannian manifolds; CHAPTER 7 Complex structures and holomorphic maps; CHAPTER 8 Holomorphic forms and vector fields; CHAPTER 9 Complex and holomorphic vector bundles; CHAPTER 10 Hermitian bundles; CHAPTER 11 Hermitian and Kahler metrics; CHAPTER 12 The curvature tensor of Kahler manifolds; CHAPTER 13 Examples of Kahler metrics
505
8
$a
CHAPTER 14 Natural operators on Riemannian and Kahler manifoldsCHAPTER 15 Hodge and Dolbeault theories; CHAPTER 16 Chern classes; CHAPTER 17 The Ricci form of Kahler manifolds; CHAPTER 18 The Calabi–Yau theorem; CHAPTER 19 Kahler–Einstein metrics; CHAPTER 20 Weitzenbock techniques; CHAPTER 21 The Hirzebruch–Riemann–Roch formula; CHAPTER 22 Further vanishing results; CHAPTER 23 Ricci-flat Kahler metrics; CHAPTER 24 Explicit examples of Calabi–Yau manifolds; Bibliography; Index
520
$a
Graduate text providing a concise and self-contained introduction to Kahler geometry.
533
$a
Electronic reproduction.
$n
Available via World Wide Web.
538
$a
Mode of access: World Wide Web.
655
7
$a
Electronic books.
$2
local.
$3
96803
710
2
$a
Ebooks Corporation.
$3
197505
776
1
$z
9780521868914
856
4 0
$z
Click here to view book
$u
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511618666#
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login