語系:
繁體中文
English
說明(常見問題)
回圖書館
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Homogenization methods for multiscal...
~
Mei, Chiang C.
Homogenization methods for multiscale mechanics
紀錄類型:
書目-電子資源 : 單行本
正題名/作者:
Homogenization methods for multiscale mechanics/ Chiang C. Mei, Bogdan Vernescu.
作者:
Mei, Chiang C.
其他作者:
Vernescu, Bogdan.
出版者:
Singapore ;World Scientific, : 2010.,
面頁冊數:
1 online resource (xvii, 330 p.) :ill. :
標題:
Homogenization (Differential equations) -
電子資源:
http://www.worldscientific.com/worldscibooks/10.1142/7427#t=toc
ISBN:
9789814282451 (electronic bk.)
Homogenization methods for multiscale mechanics
Mei, Chiang C.
Homogenization methods for multiscale mechanics
[electronic resource] /Chiang C. Mei, Bogdan Vernescu. - Singapore ;World Scientific,2010. - 1 online resource (xvii, 330 p.) :ill.
Includes bibliographical references and index.
In many physical problems several scales present either in space or in time, caused by either inhomogeneity of the medium or complexity of the mechanical process. A fundamental approach is to first construct micro-scale models, and then deduce the macro-scale laws and the constitutive relations by properly averaging over the micro-scale. The perturbation method of multiple scales can be used to derive averaged equations for a much larger scale from considerations of the small scales. In the mechanics of multiscale media, the analytical scheme of upscaling is known as the Theory of Homogenizati
ISBN: 9789814282451 (electronic bk.)Subjects--Topical Terms:
134809
Homogenization (Differential equations)
Index Terms--Genre/Form:
96803
Electronic books.
LC Class. No.: QA377 / .M45 2010eb
Dewey Class. No.: 515.3/53
Homogenization methods for multiscale mechanics
LDR
:01521cmm a2200253Ka 4500
001
137478
006
m o d
007
cr cnu---unuuu
008
160114s2010 si a ob 001 0 eng d
020
$a
9789814282451 (electronic bk.)
020
$a
9814282456 (electronic bk.)
020
$z
9789814282444
020
$z
9814282448
035
$a
ocn740444832
040
$a
N
$b
eng
$c
N
$d
YDXCP
$d
EBLCP
$d
E7B
$d
OCLCQ
$d
DEBSZ
$d
OCLCQ
$d
MHW
049
$a
FISA
050
4
$a
QA377
$b
.M45 2010eb
082
0 4
$a
515.3/53
$2
22
100
1
$a
Mei, Chiang C.
$3
247269
245
1 0
$a
Homogenization methods for multiscale mechanics
$h
[electronic resource] /
$c
Chiang C. Mei, Bogdan Vernescu.
260
$a
Singapore ;
$a
Hackensack, NJ :
$c
2010.
$b
World Scientific,
300
$a
1 online resource (xvii, 330 p.) :
$b
ill.
504
$a
Includes bibliographical references and index.
520
$a
In many physical problems several scales present either in space or in time, caused by either inhomogeneity of the medium or complexity of the mechanical process. A fundamental approach is to first construct micro-scale models, and then deduce the macro-scale laws and the constitutive relations by properly averaging over the micro-scale. The perturbation method of multiple scales can be used to derive averaged equations for a much larger scale from considerations of the small scales. In the mechanics of multiscale media, the analytical scheme of upscaling is known as the Theory of Homogenizati
588
$a
Description based on print version record.
650
0
$a
Homogenization (Differential equations)
$3
134809
650
0
$a
Mathematical physics.
$3
121500
655
0
$a
Electronic books.
$2
local.
$3
96803
700
1
$a
Vernescu, Bogdan.
$3
247270
856
4 0
$u
http://www.worldscientific.com/worldscibooks/10.1142/7427#t=toc
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入