紀錄類型: |
書目-電子資源
: 單行本
|
正題名/作者: |
Data mining/ |
其他題名: |
practical machine learning tools and techniques. |
作者: |
Witten, I. H. |
其他作者: |
Hall, Mark A. |
出版者: |
Burlington, MA :Morgan Kaufmann, : c2011., |
面頁冊數: |
1 online resource (xxxiii, 629 p.) :ill. : |
附註: |
Machine generated contents note: PART I: Machine Learning Tools and Techniques. Ch 1. What's It All About? Ch 2. Input: Concepts, Instances, Attributes. Ch 3. Output: Knowledge Representation. Ch 4. Algorithms: The Basic Methods. Ch 5. Credibility: Evaluating What's Been Learned. PART II: Advanced Data Mining. Ch 6. Implementations: Real Machine Learning Schemes. Ch 7. Data Transformation. Ch 8. Ensemble Learning. Ch 9. Moving On: Applications and Beyond. PART III: The Weka Data MiningWorkbench. Ch 10. Introduction to Weka. Ch 11. The Explorer. Ch 12. The Knowledge Flow Interface. Ch 13. The Experimenter. Ch 14 The Command-Line Interface. Ch 15. Embedded Machine Learning. Ch 16. Writing New Learning Schemes. Ch 17. Tutorial Exercises for the Weka Explorer. |
標題: |
Data mining. - |
電子資源: |
http://www.sciencedirect.com/science/book/9780123748560 |
ISBN: |
9780123748560 (electronic bk.) |