語系:
繁體中文
English
說明(常見問題)
回圖書館
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Topological Solitons.
~
Manton, Nicholas.
Topological Solitons.
紀錄類型:
書目-電子資源 : 單行本
正題名/作者:
Topological Solitons./
作者:
Manton, Nicholas.
其他作者:
Landshoff, P. V.
出版者:
Cambridge :Cambridge University Press, : 2004.,
面頁冊數:
507 p.
電子資源:
Click here to view book
ISBN:
9780511617034 (electronic bk.)
Topological Solitons.
Manton, Nicholas.
Topological Solitons.
[electronic resource]. - Cambridge :Cambridge University Press,2004. - 507 p.
Cover; Half-title; Series-title; Title; Copyright; Contents; Preface; 1 Introduction; 1.1 Solitons as particles; 1.2 A brief history of topological solitons; 1.3 Bogomolny equations and moduli spaces; 1.4 Soliton dynamics; 1.5 Solitons and integrable systems; 1.6 Solitons – experimental status; 1.7 Outline of this book; 2 Lagrangians and fields; 2.1 Finite-dimensional systems; 2.2 Symmetries and conservation laws; 2.3 Field theory; 2.4 Noether’s theorem in field theory; 2.5 Vacua and spontaneous symmetry breaking; 2.6 Gauge theory; 2.7 The Higgs mechanism; 2.8 Gradient flow in field theory
This book introduces the main examples of topological solitons in classical field theories, discusses the forces between solitons, and surveys both static and dynamic multi-soliton solutions. It covers kinks in one dimension, lumps and vortices in two dimensions, monopoles and Skyrmions in three dimensions, and instantons in four dimensions.
Electronic reproduction.
Available via World Wide Web.
Mode of access: World Wide Web.
ISBN: 9780511617034 (electronic bk.)Index Terms--Genre/Form:
96803
Electronic books.
LC Class. No.: QC174.26. W28 / M36 2004
Dewey Class. No.: 530.14
Topological Solitons.
LDR
:02254nmm a22002893u 4500
001
148149
003
AU-PeEL
005
20090601202836.0
006
m d
007
cr mn---------
008
160127t2004 ||| s |||||||eng|d
020
$a
9780511617034 (electronic bk.)
020
$a
9780521838368 (print)
035
$a
EBL266481
035
$a
EBL266481
040
$a
AU-PeEL
$c
AU-PeEL
$d
AU-PeEL
050
0 0
$a
QC174.26. W28
$b
M36 2004
082
0 0
$a
530.14
100
1
$a
Manton, Nicholas.
$3
276265
245
1 0
$a
Topological Solitons.
$h
[electronic resource].
260
$a
Cambridge :
$c
2004.
$b
Cambridge University Press,
300
$a
507 p.
505
0
$a
Cover; Half-title; Series-title; Title; Copyright; Contents; Preface; 1 Introduction; 1.1 Solitons as particles; 1.2 A brief history of topological solitons; 1.3 Bogomolny equations and moduli spaces; 1.4 Soliton dynamics; 1.5 Solitons and integrable systems; 1.6 Solitons – experimental status; 1.7 Outline of this book; 2 Lagrangians and fields; 2.1 Finite-dimensional systems; 2.2 Symmetries and conservation laws; 2.3 Field theory; 2.4 Noether’s theorem in field theory; 2.5 Vacua and spontaneous symmetry breaking; 2.6 Gauge theory; 2.7 The Higgs mechanism; 2.8 Gradient flow in field theory
505
8
$a
3 Topology in field theory3.1 Homotopy theory; 3.2 Topological degree; 3.3 Gauge fields as differential forms; 3.4 Chern numbers of abelian gauge .elds; 3.5 Chern numbers for non-abelian gauge fields; 3.6 Chern-Simons forms; 4 Solitons – general theory; 4.1 Topology and solitons; 4.2 Scaling arguments; 4.3 Symmetry and reduction of dimension; 4.4 Principle of symmetric criticality; 4.5 Moduli spaces and soliton dynamics; 5 Kinks; 5.1
520
$a
This book introduces the main examples of topological solitons in classical field theories, discusses the forces between solitons, and surveys both static and dynamic multi-soliton solutions. It covers kinks in one dimension, lumps and vortices in two dimensions, monopoles and Skyrmions in three dimensions, and instantons in four dimensions.
533
$a
Electronic reproduction.
$n
Available via World Wide Web.
538
$a
Mode of access: World Wide Web.
655
7
$a
Electronic books.
$2
local.
$3
96803
700
1
$a
Landshoff, P. V.
$3
276266
700
1
$a
Nelson, D. R.
$3
276267
700
1
$a
Sutcliffe, Paul.
$3
276268
700
1
$a
Weinberg, S.
$3
276269
710
2
$a
Ebooks Corporation.
$3
197505
776
1
$z
9780521838368
856
4 0
$z
Click here to view book
$u
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511617034
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入