語系:
繁體中文
English
說明(常見問題)
回圖書館
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Visualization of categorical data
~
Blasius, J�org, (1957-)
Visualization of categorical data
紀錄類型:
書目-電子資源 : 單行本
正題名/作者:
Visualization of categorical data/ edited by J�org Blasius, Michael Greenacre.
其他作者:
Blasius, J�org,
出版者:
San Diego :Academic Press, : c1998.,
面頁冊數:
1 online resource (xiv, 594 p.) :ill. (some col.) :
標題:
Multivariate analysis - Graphic methods. -
電子資源:
http://www.sciencedirect.com/science/book/9780122990458
ISBN:
9780122990458
Visualization of categorical data
Visualization of categorical data
[electronic resource] /edited by J�org Blasius, Michael Greenacre. - San Diego :Academic Press,c1998. - 1 online resource (xiv, 594 p.) :ill. (some col.)
Includes bibliographical references (p. 541-574) and index.
J. de Leeuw, Keynote Chapter: Heres Looking at Multivariables. Graphics for Visualization: M. Friendly, Conceptual Models for Visualizing Contingency Table Data. J.-H. Chauchat and A. Risson, BERTINs Graphics and Multidimensional Data Analysis Methods. B. Francis, M. Fuller, and J. Pritchard, The Use of Visualization in the Examination of Categorical Event Histories. T. Aluja-Banet and E. Nafroa, General Impurity and Data Diagnostics in Decision Trees. U. Frick, J. Rehm, K.E. Wolff, and M. Laschat, Obstetricians Attitudes on Perinatal Risk: The Role of Quantitative and Conceptual Scaling Procedures. K.E. Wolff and S. Gabler, Comparison of Visualizations in Formal Concept Analysisand Correspondence Analysis. V. Choulakian and J. Allard, The Z-Plot: A Graphical Procedure for Contingency Tables with an Ordered Response Variable. Correspondence Analysis: I. Partchev, Using Visualization Techniques to Explore Bulgarian Politics. B. Martens and J. Kastl, Visualization of Agenda Building Processes by Correspondence Analysis. L. Lebart, Visualizations of Textual Data. M.B. Bertaut Visualization of Open Questions: French Study of Pupils Attitudes to Mathematics. F. Fehlen, The Cloud of Candidates. Exploring the Political Field. C. Tarnai and U. Wuggenig, Normative Integration of the Avant-garde? Traditionalism in the Art Fields of Vienna, Hamburg, and Paris. S. Nishisato, Graphing is Believing: Interpretable Graphs for Dual Scaling. B. Le Roux and H. Rouanet, Interpreting the Axes in Multiple Correspondence Analysis: Method of the Contributions of Points and Deviations. M. Greenacre, Diagnostics for Joint Displays in Correspondence Analysis. V. Thiessen and J. Blasius, Using Multiple Correspondence Analysis to Distinguish between Substantive and Non-Substantive Responses. A. Carlier and P.M. Kroonenberg, The Case of the French Cantons: An Application of Three-Way Correspondence Analysis. J.J. Meulman and W.J. Heiser, Visual Display of Interaction in Multiway Contingency Tables by Homogeneity in Analysis: the 2 x 2 x 2 Case. S. Balbi, Graphical Displays in Non-Symmetric Correspondence Analysis. R. Siciliano and F. Mola, Ternary Classification Trees: A Factorial Approach. Multidimensional Scaling and Biplot: A. Kimball Ronney, C.C. Moore, and T.J. Brazill, Correspondence Analysis as A Multidimensional Scaling Technique for Non-Frequency Similarity Matrices. I. Borg and P.J.F. Groenen, Regional Interpretations in Multidimensional Scaling. C.M. Cuadras and J. Fortiana, Visualizing Categorical Data with Related Metric Scaling. M. Vuylsteke-Wauters, J. Billiet, H. De Witte, and F. Symons, Contrasting the Electorates of Eight Political Parties: A Visual Presentation Using the Biplot. K. Ruben Gabriel, M. Purificacion Galindo, and J.L. Vicente-Villardon, Use of Biplots to Diagnose Independence Models in Three-Way Contingency Tables. J.C. Gower and S.A. Harding, Prediction Regions for Categorical Variables. Visualization in Modeling: C.C. Clogg, T. Rudas, and S. Matthews, Analysis of Contingency Tables Using Graphical Displays Based on the Mixture Index of Fit. Y. Takane, Visualization in Ideal Point Discriminant Analysis. U. Bickenholt, Modeling Time-Dependent Preferences: Drifts in Ideal Points. A.L. McCutcheon, Correspondence Analysis Used Complementary to Latent Class Analysis in Comparative Social Research. L. Andries van der Ark and P.G.M. van der Heijden, Graphical Display of Latent Class Analysis, with Special Reference to Correspondence Analysis. J. Magidson, Using New General Ordinal Logit Displays to Visualizethe Effects in Categorical Outcome Data. A. de Falguerolles, Log-bilinear Biplots in Action. References. Index.
A unique and timely monograph, Visualization of Categorical Data contains a useful balance of theoretical and practical material on this important new area. Top researchers in the field present the books four main topics: visualization, correspondence analysis, biplots and multidimensional scaling, and contingency table models. This volume discusses how surveys, which are employed in many different research areas, generate categorical data. It will be of great interest to anyone involved in collecting or analyzing categorical data. * Correspondence Analysis * Homogeneity Analysis * Loglinear and Association Models * Latent Class Analysis * Multidimensional Scaling * Cluster Analysis * Ideal Point Discriminant Analysis * CHAID * Formal Concept Analysis * Graphical Models.
ISBN: 9780122990458
Source: 78200:78200Elsevier Science & Technologyhttp://www.sciencedirect.comSubjects--Topical Terms:
325361
Multivariate analysis
--Graphic methods.Index Terms--Genre/Form:
96803
Electronic books.
LC Class. No.: QA278 / .V57 1998eb
Dewey Class. No.: 001.4/226
Visualization of categorical data
LDR
:05719cmm 2200337Ia 4500
001
167059
003
OCoLC
005
20111122091403.0
006
m d
007
cr cn|||||||||
008
160302s1998 caua ob 001 0 eng d
020
$a
9780122990458
020
$a
0122990455
029
1
$a
NZ1
$b
12432289
029
1
$a
CHVBK
$b
135304776
035
$a
(OCoLC)162128755
035
$a
ocn162128755
037
$a
78200:78200
$b
Elsevier Science & Technology
$n
http://www.sciencedirect.com
040
$a
OPELS
$b
eng
$c
OPELS
$d
OCLCG
$d
OCLCQ
049
$a
TEFA
050
4
$a
QA278
$b
.V57 1998eb
082
0 4
$a
001.4/226
$2
22
245
0 0
$a
Visualization of categorical data
$h
[electronic resource] /
$c
edited by J�org Blasius, Michael Greenacre.
260
$a
San Diego :
$c
c1998.
$b
Academic Press,
300
$a
1 online resource (xiv, 594 p.) :
$b
ill. (some col.)
504
$a
Includes bibliographical references (p. 541-574) and index.
505
0
$a
J. de Leeuw, Keynote Chapter: Heres Looking at Multivariables. Graphics for Visualization: M. Friendly, Conceptual Models for Visualizing Contingency Table Data. J.-H. Chauchat and A. Risson, BERTINs Graphics and Multidimensional Data Analysis Methods. B. Francis, M. Fuller, and J. Pritchard, The Use of Visualization in the Examination of Categorical Event Histories. T. Aluja-Banet and E. Nafroa, General Impurity and Data Diagnostics in Decision Trees. U. Frick, J. Rehm, K.E. Wolff, and M. Laschat, Obstetricians Attitudes on Perinatal Risk: The Role of Quantitative and Conceptual Scaling Procedures. K.E. Wolff and S. Gabler, Comparison of Visualizations in Formal Concept Analysisand Correspondence Analysis. V. Choulakian and J. Allard, The Z-Plot: A Graphical Procedure for Contingency Tables with an Ordered Response Variable. Correspondence Analysis: I. Partchev, Using Visualization Techniques to Explore Bulgarian Politics. B. Martens and J. Kastl, Visualization of Agenda Building Processes by Correspondence Analysis. L. Lebart, Visualizations of Textual Data. M.B. Bertaut Visualization of Open Questions: French Study of Pupils Attitudes to Mathematics. F. Fehlen, The Cloud of Candidates. Exploring the Political Field. C. Tarnai and U. Wuggenig, Normative Integration of the Avant-garde? Traditionalism in the Art Fields of Vienna, Hamburg, and Paris. S. Nishisato, Graphing is Believing: Interpretable Graphs for Dual Scaling. B. Le Roux and H. Rouanet, Interpreting the Axes in Multiple Correspondence Analysis: Method of the Contributions of Points and Deviations. M. Greenacre, Diagnostics for Joint Displays in Correspondence Analysis. V. Thiessen and J. Blasius, Using Multiple Correspondence Analysis to Distinguish between Substantive and Non-Substantive Responses. A. Carlier and P.M. Kroonenberg, The Case of the French Cantons: An Application of Three-Way Correspondence Analysis. J.J. Meulman and W.J. Heiser, Visual Display of Interaction in Multiway Contingency Tables by Homogeneity in Analysis: the 2 x 2 x 2 Case. S. Balbi, Graphical Displays in Non-Symmetric Correspondence Analysis. R. Siciliano and F. Mola, Ternary Classification Trees: A Factorial Approach. Multidimensional Scaling and Biplot: A. Kimball Ronney, C.C. Moore, and T.J. Brazill, Correspondence Analysis as A Multidimensional Scaling Technique for Non-Frequency Similarity Matrices. I. Borg and P.J.F. Groenen, Regional Interpretations in Multidimensional Scaling. C.M. Cuadras and J. Fortiana, Visualizing Categorical Data with Related Metric Scaling. M. Vuylsteke-Wauters, J. Billiet, H. De Witte, and F. Symons, Contrasting the Electorates of Eight Political Parties: A Visual Presentation Using the Biplot. K. Ruben Gabriel, M. Purificacion Galindo, and J.L. Vicente-Villardon, Use of Biplots to Diagnose Independence Models in Three-Way Contingency Tables. J.C. Gower and S.A. Harding, Prediction Regions for Categorical Variables. Visualization in Modeling: C.C. Clogg, T. Rudas, and S. Matthews, Analysis of Contingency Tables Using Graphical Displays Based on the Mixture Index of Fit. Y. Takane, Visualization in Ideal Point Discriminant Analysis. U. Bickenholt, Modeling Time-Dependent Preferences: Drifts in Ideal Points. A.L. McCutcheon, Correspondence Analysis Used Complementary to Latent Class Analysis in Comparative Social Research. L. Andries van der Ark and P.G.M. van der Heijden, Graphical Display of Latent Class Analysis, with Special Reference to Correspondence Analysis. J. Magidson, Using New General Ordinal Logit Displays to Visualizethe Effects in Categorical Outcome Data. A. de Falguerolles, Log-bilinear Biplots in Action. References. Index.
520
$a
A unique and timely monograph, Visualization of Categorical Data contains a useful balance of theoretical and practical material on this important new area. Top researchers in the field present the books four main topics: visualization, correspondence analysis, biplots and multidimensional scaling, and contingency table models. This volume discusses how surveys, which are employed in many different research areas, generate categorical data. It will be of great interest to anyone involved in collecting or analyzing categorical data. * Correspondence Analysis * Homogeneity Analysis * Loglinear and Association Models * Latent Class Analysis * Multidimensional Scaling * Cluster Analysis * Ideal Point Discriminant Analysis * CHAID * Formal Concept Analysis * Graphical Models.
588
$a
Description based on print version record.
650
0
$a
Multivariate analysis
$x
Graphic methods.
$3
325361
650
1 7
$a
Grafische voorstellingen.
$2
gtt
$3
325362
650
1 7
$a
Kwalitatieve gegevens.
$2
gtt
$3
325363
650
7
$a
An�alise multivariada.
$2
larpcal
$3
325364
655
4
$a
Electronic books.
$2
local.
$3
96803
700
1
$a
Blasius, J�org,
$d
1957-
$3
325360
700
1
$a
Greenacre, Michael J.
$3
264753
776
0 8
$i
Print version:
$t
Visualization of categorical data.
$d
San Diego : Academic Press, c1998
$z
0122990455
$z
9780122990458
$w
(DLC) 97035782
$w
(OCoLC)37475149
856
4 0
$3
ScienceDirect
$u
http://www.sciencedirect.com/science/book/9780122990458
994
$a
C0
$b
TEF
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入